A Modified Version of the RNG k–ε Turbulence Model for the Scale-Resolving Simulation of Internal Combustion Engines

نویسندگان

  • Vesselin Krassimirov Krastev
  • Luca Silvestri
  • Giacomo Falcucci
  • John A. Paulson
چکیده

The unsteady and random character of turbulent flow motion is a key aspect of the multidimensional modeling of internal combustion engines (ICEs). A typical example can be found in the prediction of the cycle-to-cycle variability (CCV) in modern, highly downsized gasoline direct injection (GDI) engines, which strongly depends on the accurate simulation of turbulent in-cylinder flow structures. The current standard for turbulence modeling in ICEs is still represented by the unsteady form of Reynold-averaged Navier Stokes equations (URANS), which allows the simulation of full engine cycles at relatively low computational costs. URANS-based methods, however, are only able to return a statistical description of turbulence, as the effects of all scales of motion are entirely modeled. Therefore, during the last decade, scale-resolving methods such as large eddy simulation (LES) or hybrid URANS/LES approaches are gaining increasing attention among the engine-modeling community. In the present paper, we propose a scale-resolving capable modification of the popular RNG k–ε URANS model. The modification is based on a detached-eddy simulation (DES) framework and allows one to explicitly set the behavior (URANS, DES or LES) of the model in different zones of the computational domain. The resulting zonal formulation has been tested on two reference test cases, comparing the numerical predictions with the available experimental data sets and with previous computational studies. Overall, the scale-resolved part of the computed flow has been found to be consistent with the expected flow physics, thus confirming the validity of the proposed simulation methodology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Internal combustion engines in cylinder flow simulation improvement using nonlinear k-ε turbulence models

The purpose of this paper is to studying nonlinear k-ε turbulence models and its advantages in internal combustion engines, since the standard k-ε model is incapable of representing the anisotropy of turbulence intensities and fails to express the Reynolds stresses adequately in rotating flows. Therefore, this model is not only incapable of expressing the anisotropy of turbulence in an engine c...

متن کامل

A Comparative Study of Variant Turbulence Modeling in the Physical Behaviors of Diesel Spray Combustion

In this research, the performance of nonlinear k-ε turbulence model in resolving the time delay between mean flow changes and its proportionate turbulent dissipation rate adjustment was investigated. For this purpose, the ability of Launder-Spalding linear, Suga non-linear, Yakhot RNG and Rietz modified RNG k-ε models are compared in the estimation of axial mean velocity profile and turbulent i...

متن کامل

Comparison of different turbulence models in a high pressure fuel jet

In this study, modeling of a fuel jet which has been injected by high pressure into a low-pressure tank are investigated. Due to the initial conditions and the geometry of this case and similar cases (like CNG injectors in internal combustion engines (ICE)), the barrel shocks and Mach disk are observed. Hence a turbulence and transient flow will be expected with lots of shocks and waves. Accord...

متن کامل

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF WIND PRESSURE COEFFICIENTS ON SCALLOP DOME

The wind loads considerably influence lightweight spatial structures. An example of spatial structures is scallop domes that contain various configurations and forms and the wind impact on a scallop dome is more complex due to its additional curvature. In our work, the wind pressure coefficient (Cp ) on the scallop dome surface is studied numerically and experimentally. Firstly, the programming...

متن کامل

Effects of Different Turbulence Models in Simulation of Unsteady Tip Leakage Flow in Axial Compressor Rotor Blades Row

Characteristics of rotor blade tip clearance flow in axial compressors can significantly affect their performance and stable operation. It may also increase blade vibrations and cause detrimental noises. Therefore, this paper is contributed to investigate tip leakage flow in a low speed isolated axial compressor rotor blades row. Simulations are carried out on near-stall condition, which is val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017